Mapeo de inestabilidad de laderas en cuencas de fuerte pendiente mediante el enfoque de talud infinito.

Autores/as

DOI:

https://doi.org/10.47796/ves.v11i1.601

Palabras clave:

Inestabilidad, Cuyocuyo, talud infinito, sistema de información geográfica, deslizamiento

Resumen

Las zonas de fuerte pendiente y con presencia de lluvias son susceptibles a deslizamientos que a su vez pueden provocar otros desastres. El objetivo de esta investigación es determinar el mapa de peligro por deslizamiento mediante métodos determinísticos, como un estudio de caso en la cuenca del río Cuyocuyo, ubicado en la zona nororiental del departamento de Puno, perteneciente a la vertiente amazónica, considerada como zona moderadamente lluviosa y de pendientes abruptas. El mapeo de la inestabilidad del terreno, se realiza considerando los deslizamientos como traslacional superficial, controlado por convergencia del flujo subterráneo, utilizando el modelo de talud infinito. Los datos requeridos para implementar el modelo incluyen topografía, propiedades del suelo y estados hídricos que son altamente variables tanto en el espacio y el tiempo. El inventario de deslizamientos es utilizado como verificación en los puntos de ocurrencia. Como resultados se ha obtenido para las condiciones de suelo saturado, semisaturado y seco el factor de seguridad está entre las clases inestable a muy inestable, en un 42%, 38% y 18% del área de la cuenca respectivamente; lo que es un indicativo de zona propensa a deslizamientos. La información dada por los mapas de susceptibilidad a deslizamiento, ayuda a las autoridades y técnicos para que adopten estrategias de reducción de peligro por deslizamientos existentes y futuros por medio de la prevención, mitigación y evasión.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Roberto Alfaro Alejo, Universidad Nacional del Altiplano, Escuela de Ingeniería Agrícola. Puno, Perú.

Magíster en Ingeniería Civil mención en Geotecnia. ralfaro@unap.edu.pe.

Jose A. Mamani Gomez, Universidad Nacional del Altiplano, Escuela de Ingeniería Agrícola. Puno, Perú

Magíster en Manejo y Gestión integral de cuencas hidrográficas. jmamani@unap.edu.pe.

Isidro A. Pilares Hualpa, Universidad Andina Néstor Cáceres Velásquez, Escuela de Ingeniería Civil. Juliaca, Perú.

Doctor en recursos hídricos, Magíster en ingeniería civil mención en Geotecnia. ipilares@unap.edu.pe.

Citas

Acharya, G., De Smedt, F., & Long, N. T. (2006). Assessing landslide hazard in GIS: a case study from Rasuwa, Nepal. Bulletin of Engineering Geology and the Environment, 65(1), 99–107. https://doi.org/10.1007/s10064-005-0025-y.

Alexander, D. (1992). On the causes of landslides: Human activities, perception, and natural processes. Environmental Geology and Water Sciences, 20(3), 165–179. https://doi.org/10.1007/BF01706160.

Alfaro-Alejo, R., Paredes-Mamani, R. P., Montenegro-Gambini, J., Belizario-Quispe, G., & Flores-Condori, E. (2021). Geo-hydrological Risk Awareness and Disaster Preparedness in a Mountainous Area of Southern Peru Vulnerable to Disaster. IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/906/1/012125.

Aristizábal, E., Vélez, J. I., Martínez, H. E., & Jaboyedoff, M. (2016). SHIA_Landslide: a distributed conceptual and physically based model to forecast the temporal and spatial occurrence of shallow landslides triggered by rainfall in tropical and mountainous basins. Landslides, 13(3), 497–517. https://doi.org/10.1007/s10346-015-0580-7.

Borga, M., Dalla Fontana, G., Da Ros, D., & Marchi, L. (1998). Shallow landslide hazard assessment using a physically based model and digital elevation data. Environmental Geology, 35(2), 81–88.

Bosco, G., Dalpiaz, M., & Simeoni, L. (2018). Effects of modified irrigation procedures on the stability of cultivated slopes. In Landslides and Engineered Slopes. Experience, Theory and Practice (pp. 483–489). CRC Press.

Carrara, A., Guzzetti, F., Cardinali, M., & Reichenbach, P. (1999). Use of GIS Technology in the Prediction and Monitoring of Landslide Hazard. Natural Hazards, 20(2), 117–135. https://doi.org/10.1023/A:1008097111310.

Cornforth, D. (2005). Landslides in Practice: Investigation, Analysis, and Remedial/Preventative Options in Soils. Wiley Publishers.

Corominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J.-P., Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O., Agliardi, F., Pitilakis, K., Winter, M. G., Pastor, M., Ferlisi, S., Tofani, V., Hervás, J., & Smith, J. T. (2014). Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment, 73(2), 209–263. https://doi.org/10.1007/s10064-013-0538-8.

Craig, A. M. L., & Augusto Filho, O. (2020). Landslide Susceptibility Mapping of Highway Slopes, Using Stability Analyses and GIS Methods. https://doi.org/10.28927/SR.431071.

Crozier, M. J. (1986). Landslides: causes, consequences & environment. Taylor & Francis.

Cruden, D. M., & Varnes, D. J. (1996). Landslide Types and Processes. In A. K. Turner & R. L. Schuster (Eds.), Landslides: Investigation and Mitigation. . Transportation Research Board Special Report.

Dietrich, W. E., de Asua, R. R., Coyle, J., Orr, B., & Trso, M. (1998). A validation study of the shallow slope stability model, SHALSTAB, in forested lands of Northern California. Stillwater Ecosystem, Watershed & Riverine Sciences. Berkeley, CA.

Dobrescu, C.-F., Calarasu, E.-A., & Huzui-Stoiculescu, A. E. (2018). Integrative analysis used for landslide susceptibility zoning at local scale based on GIS modeling. Ce/Papers, 2(2–3), 293–298. https://doi.org/10.1002/cepa.686.

Dolojan, N. L. J., Moriguchi, S., Hashimoto, M., & Terada, K. (2021). Mapping method of rainfall-induced landslide hazards by infiltration and slope stability analysis. Landslides, 18(6), 2039–2057. https://doi.org/10.1007/s10346-020-01617-x.

Duncan, J. M., Wright, S. G., & Brandon, T. L. (2014). Soil Strength and Slope Stability. John Wiley & Sons, Inc.

Ferrer-Boix, C., & an Lim, Z. (2016). Landslide Hazard Analysis Using An Infinite Slope Stability Model Approach (A Case Study–Garibaldi At Squamish Project).

Fuchs, M., Torizin, J., & Kühn, F. (2014). The effect of DEM resolution on the computation of the factor of safety using an infinite slope model. Geomorphology, 224, 16–26.

García, W., Delfín, M., Ledezma, M., & Arévalo, B. (2021). Integrando métodos de evaluación de riesgos de deslizamientos e inundaciones en cuencas del Tunari y zona de Alto Cochabamba. Acta Nova, 10(1), 61–95.

Gomez, D. (2012). Evaluacion tecnica de peligros geologicos en los sectores Jilari - Llamanipata - Ccatasuyo. INGEMMET. https://hdl.handle.net/20.500.12544/1589.

Gorsevski, P. V, Gessler, P., & Foltz, R. B. (2000). Spatial prediction of landslide hazard using discriminant analysis and GIS. In: GIS in the Rockies 2000 Conference and Workshop: Applications for the 21st Century, Denver, Colorado, September 25-27, 2000.

Huang, Y. H. (1983). Stability Analysis of Earth Slopes. Springer Science.

Jakob, M., Stein, D., & Ulmi, M. (2012). Vulnerability of buildings to debris flow impact. Natural Hazards, 60(2), 241–261. https://doi.org/10.1007/s11069-011-0007-2.

Mergili, M. (2021). r.slope.stability - The slope stability model. Publications. https://www.slopestability.org/publications.php.

Mizuyama, T. (2008). Structural Countermeasures for Debris Flow Disasters . International Journal of Erosion Control Engineering, 1(2), 38–43.

Okubo, S., Ikeya, H., Ishikawa, Y., & Yamada, T. (1997). Development of new methods for countermeasures against debris flows. In A. Armanini & M. Michiue (Eds.), Recent Developments on Debris Flows (pp. 166–185). Springer Berlin Heidelberg. https://doi.org/10.1007/BFb0117768.

Pack, R. T., Tarboton, D. G., & Goodwin, C. N. (2001). Assessing terrain stability in a GIS using SINMAP.

Palacio Cordoba, J., Mergili, M., & Aristizábal, E. (2020). Probabilistic landslide susceptibility analysis in tropical mountainous terrain using the physically based r. slope. stability model. Natural Hazards and Earth System Sciences, 20(3), 815–829.

Pilares, I., Montalvo, N., Mejía, A., Guevara-Perez, E., Fano, G., & Alfaro, R. (2018). Evaluation of water availability in the Cabanillas river basin of the Peruvian Altiplano under regionalized climatic scenario. Ingenieria UC, 25(2), 307–319.

PREDES. (2008). Plan de Reducción de Riesgos distrito de Cuyocuyo, Comité de Defensa Civil de Cuyocuyo. OXFAM-PREDES.

Ray, R. L., & de Smedt, F. (2009). Slope stability analysis on a regional scale using GIS: a case study from Dhading, Nepal. Environmental Geology, 57(7), 1603–1611. https://doi.org/10.1007/s00254-008-1435-5.

Skempton, A. W., & DeLory, F. A. (1957). Stability of natural slopes in London Clay. Proc. 4th Internal Conference on Soil Mechanics and Foundation Engng., London, 1957, 2, 378–381.

Suárez Díaz, J. (2014). Deslizamientos. Tomo II: Técnicas de Remediación (Geotecnologia (ed.)). Geotecnologia SAS. http://www.erosion.com.co/deslizamientos-tomo-ii-tecnicas-de-remediacion.html.

Takahashi, T. (2014). Debris Flow: Mechanics, Prediction and Countermeasures (2nd ed.). CRC Press. https://doi.org/doi:10.1201/b16647-710.1201/b16647-7.

Turner, A. K. (2018). Social and environmental impacts of landslides. Innovative Infrastructure Solutions, 3(1), 70. https://doi.org/10.1007/s41062-018-0175-y.

Van Westen, C. J., Soeters, R., & Sijmons, K. (2000). Digital geomorphological landslide hazard mapping of the Alpago area, Italy. International Journal of Applied Earth Observation and Geoinformation, 2(1), 51–60. https://doi.org/10.1016/S0303-2434(00)85026-6.

Wubalem, A. (2021). Landslide susceptibility mapping using statistical methods in Uatzau catchment area, northwestern Ethiopia. Geoenvironmental Disasters, 8(1), 1. https://doi.org/10.1186/s40677-020-00170-y.

Xiong, M., Meng, X., Wang, S., Guo, P., Li, Y., Chen, G., Qing, F., Cui, Z., & Zhao, Y. (2016). Effectiveness of debris flow mitigation strategies in mountainous regions. Progress in Physical Geography: Earth and Environment, 40(6), 768–793. https://doi.org/10.1177/0309133316655304.

Publicado

2022-05-24

Cómo citar

Alfaro Alejo, R., Mamani Gomez, J. A., & Pilares Hualpa, I. A. (2022). Mapeo de inestabilidad de laderas en cuencas de fuerte pendiente mediante el enfoque de talud infinito. REVISTA VERITAS ET SCIENTIA - UPT, 11(1), 112–124. https://doi.org/10.47796/ves.v11i1.601